Lower Bounds on the Area Complexity of Boolean Circuits
نویسندگان
چکیده
Hromkovif, J., S.A. Loikin, A.I. Rybko, A.A. Sapoienko and N.A. Skalikova, Lower bounds on the area complexity of Boolean circuits, Theoretical Computer Science 97 (1992) 2855300. The layout area of Boolean circuits is considered as a complexity measure of Boolean functions. Introducing the communication complexity of Boolean circuits and proving that this communication complexity squared provides a lower bound on the area complexity, one obtains a powerful lower-bound technique for the area complexity of Boolean functions. Using this technique, the highest-known lower bound fi(ns’*) on the layout area of any Boolean circuit computing a specific Boolean function is improved to Q(n2). An R(n’/(log, n)‘) lower bound on the number of gates of planar Boolean circuits computing a specific one-output Boolean function is a direct consequence of this result. The circuit communication complexity that we introduce is related to the area of Boolean circuits that have all input vertices on the border of their layout, and also to the three-dimensional layout of Boolean circuits.
منابع مشابه
Lower Bounds for Uniform Constant Depth Circuits by Vivek Kashinath Gore
OF THE DISSERTATION Lower Bounds for Uniform Constant Depth Circuits by Vivek Kashinath Gore, Ph.D. Dissertation Director: Professor Eric Allender Boolean circuits were introduced in complexity theory to provide a model for parallel computation. A big advantage of studying Boolean circuits is that they can be viewed as simple combinatorial objects and thus allow us to use many algebraic and com...
متن کاملOn Constant-Depth Canonical Boolean Circuits for Computing Multilinear Functions
We consider new complexity measures for the model of multilinear circuits with general multilinear gates introduced by Goldreich and Wigderson (ECCC, 2013). These complexity measures are related to the size of canonical constant-depth Boolean circuits, which extend the definition of canonical depth-three Boolean circuits. We obtain matching lower and upper bound on the size of canonical constan...
متن کاملBranching Programs Provide Lower Bounds on the Areas of Multilective Deterministic and Nondeterministic VLSI-Circuits
Each (nondeterministic) multilective VLSI-circuit C of area A can be simulated by an oblivious (disjunctive) branching program of width exp(O(A)) which has the same multiplicity of reading as C. That is why exponential lower bounds on the width of (disjunctive) oblivious branching programs of linear depth provide lower bounds of order Sl(nlm2’), 0 <a < i, on the area of (nondeterministic) multi...
متن کاملIkenmeyer C, Komarath B, Lenzen C, Lysikov V, Mokhov A, Sreenivasaiah K.
The problem of constructing hazard-free Boolean circuits dates back to the 1940s and is an important problem in circuit design. Our main lower-bound result unconditionally shows the existence of functions whose circuit complexity is polynomially bounded while every hazardfree implementation is provably of exponential size. Previous lower bounds on the hazard-free complexity were only valid for ...
متن کاملPolynomial Threshold Functions and Boolean Threshold Circuits
We study the complexity of computing Boolean functions on general Boolean domains by polynomial threshold functions (PTFs). A typical example of a general Boolean domain is {1, 2}. We are mainly interested in the length (the number of monomials) of PTFs, with their degree and weight being of secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two thre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 97 شماره
صفحات -
تاریخ انتشار 1992